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ABSTRACT

This Final Progress Report for NCC-I-178 presents the details of the

engineering developement of an analytical/computational solution to the

heavy ion transport equation in terms of a multi-layer Green's function

formalism as applied to the Small Spacecraft Technology Initiative (SSTI)

program.

The mathematical developments are recasted into a series of efficient

computer codes for space applications. The efficency of applied algorithms

is accomplished by a nonperturbative technique of extending the Green's

function over the solution domain. The codes may also be applied to the

accelerator boundary conditions to allow code validation in laboratory

experiments.

Correltions with experiments for the isotopic version of the code with

59 and 80 isotopes present for a two layers target material in water

has been verified.



INTRODUCTION

Future NASA missions will be limited by exposure to space radiations

unless adequate shielding is provided to protect men and equipments

from such radiations. Adequate methods required to estimate the damage

caused by such radiations behind various shields can be evaluated prior

to commitment to such missions.

From the inception of the Langley Research Center heavy ion (HZE)

shielding program (refs. 2-4), there has been a continued, close relation-

ship between code development and laboratory experiment (ref. 4). Indeed,

the current research goal is to provide computationally efficient high

charge and energy ion (HZE) transport codes which can be validated with

laboratory experiments and subsquently applied to space engineering desigr

In practice, two streams of code development have prevailed due to the

strong energy dependence of necessary atomic/molecular cross sections ant

the near singular nature of the laboratory beam boundary conditions (refs.

5-7). The atomic/molecular cross section dependence is adequately dealt

with by using the methods of Wilson and Lamkin (ref. 8), allowing effici-

ent numerical procedures to be developed for space radiations (refs.

7,9-11). Although these codes could conceivably be applied to the labo-

ratory validation, methods to control truncation and discretization errors

would bear little resemblance to the space radiation codes attempting to h

validated. Clearly, a radical reorientation is required to achieve the

validation goals of the current NASA space radiation shielding program,

and such an approach in terms of a multi-layered Green's function formalis

as an extension to a previously developed single-layered algorithm is the

main thrust of this continuing research and is briefly described below.



GREEN'S FUNCTION METHODS

Transport Equations and Conventional Approach

The transport equation for high energy heavy ions is usually simplified

by assuming the straightahead approximation and neglecting the target

secondary fragments (ref. 3 et. al) and is written as

0 I

OE j k
(1)

whereCj(z,E)is the ion flux at x with energy E (MeV/amu),_j(E)is the

change in E per unit distance, aj the total macroscopic absorption cross

section and ajk the macroscopic cross section for collision of ion type

k to produce an ion of type j. The solution to equation (I) is to be

found subject to the boundary condition

4i(o, E)= li(E)
(2)

which for laboratory beams has only one value of j for which fj(E)is

not zero and that_j(E)is described by a mean energy spread a such that

It(E)= tw. e,, 0']
The solution to equation (i) is given by superposition of Greens

function Gjk as

4j(z, E) = _ / Oj_(z, E, _) tk(E')dE'
k

where Green function is a solution of

(4)

0Oz 0 Sj(E)+(Tj] Gjr.(x,E, Eo)=_.-E ajkGk,n(z, E, Eo) (5)



subject to the boundary condition

ci.(o,E,Eo)= 61_6(E- Eo) (6)

The above equations can be simplified by transforming the energy into

the residual range as

0

and defining new field functions as

(7)

_J(*._i)= Si(E)4_(_,E)
(8)

r,,,)= E,0i.(=,.¢,' Si(E)tim(=, _") (9)

_,(,j)= $¢(E)b(E) (10)

equation (5) becomes

k

ai_ Ok., (x, rk,r') (11)

with the boundary condition

!

oi.,(o,ri,,.') = 6i.,6(,.i- ,.-) (12)

and with the solution to the ion fields given by

@i(z,ri)=

oo !

/ .,,,)j'm(_.,)a.. :_. (;i_( =, "i, ' " ' '
m

o

(13)



Noteuj is the range scale factor

The solution to equation (Ii) is

as_ej = umrmand is taken as uj= Z_/Aj

written as a perturbation series

ojm( ,.j E"(°" .j, ,, = vj_x, "m) (14)

where

(15)

and

Z(Vm - uj)-

where_(x, rj,r_)is zero unless

(16)

uj , <uj(.j-c-x)___rm _ _ ,'y4-x
Um U_n

(17)

forum >uj. If uj> _,_s can happen in neutron removal, the negative of

equation (16) is used and upper and lower limits of equation (17) are

switched. The higher order terms are approximated as

;(i) , , """°kt_mm ' 1jm_z, rj,rm) _ _ vJ°Jk! akmk z 9(j, kl,kz,"" ki_l,m )

_,,k.,__, z(u,.- vj) I

In the above

(18)

9(J) = e -°iz (19)

and



and

g(Jl,J2,. ..,jn,jn+l) =
g (Jl,J2, . . . ,Jn-l,J,,) - g (Jr,J2,... ,Jn-l,Jn+l)

O'jn+l -- ajn

(20)

.,(i), fi)Note that _jm(X, rj,rm) is purely dependent oil x for i > 0, which we represent as _jm(x). (See

ref. 3.) In terms of the above, the solution to equation (1) becomes (from ref. 3)

(r,,,t) -
r¢l,i

(21)

In equation (21), ' and r Irmu m_ are given by the upper and lower limits of the inequality of

equation (17). The symbol Fro(rim) refers to the integral spectrum

oo

FI,, (r:n) -- / _fm (r) dr

r_n

We note that

(4,) - t,.

with (22)

F,, ( E') = / f,, ( E) dE

E I

and

!

-- I dE/S,,, (E)

[)

We now introduce nonperturbative terms for the summation in equation (21).

• First, we recall that the g function of n arguments wmq generated by the perturbation solution

of the transport equation neglecting ionization energy loss (rcf. 1) given by



t_
(23)

subject to the boundary condition

gjm(O) = 6jm (24)

for which the solution is

9jm(&) = 6jm9(m) -t-ojmg(j,m) +... (25)

It is also true that

k

(26)

for any positive values of x and y. Equation (26) may be used to

propagate the function gj,,(z) over the solution space from very thin

shield solutions. Equation (14) is then rewritten as

,..-) 6(:, ,-j ,,_oj,,,(=,,.j, _,,-o.,'. ,%., + -,-')+ [9i,,,(:_)-_-0,',%.,]/1:,:(,,,,,-,.'.01 (27)

and the approximate solution of equation (I) is given by

_(x,rj)= e-°F _(rj+ z)

+ _ vj lg.j,,(z)- e-°'= 6j,,,l [_,,,(,.-)_ p=(r-e) l
.(v. - us)

(28)

Green's Function Methods in a Shielded Medium

The major simplification in the Green's function method results from



the fact that the scaled spectral distribution of secondary ions to a

first approximation depends only on the depth of target penetration

as seen in equations (16), (18), and (27). The first approach to a

multi-layered Green's function will rely on this observation and assume

its validity for multi-layered shields.

Consider a domain labeled as 1 which is shielded by a second domain

labeled as 2, the number of type j ions at depth x in 1 due to type

m ions incident on domain 2 of thickness y is

.,,,=(=, v)=
k

(29)

The leading term in equation (29) is the penetrating primaries as

_,,j,,,(_lg, _/) = C--OIJ:Z--¢X2JV _jrrt 4" [9,,j., (x, V) - e-"uz-"=J v 6j,.I (30)

where all higher order terms are in the bracket of equation (30).

The first term of scaled Green's function is then

3 °) (z, rj, r') e-°'_x-°'iv6j,. 6Ix + rj (r" PV)]12jrn !/, = -- -- (31)

where p is the range scale factor for the two media

p = RIs(E)IR_j(E)
(32)

A sigle value for p is taken corresponding to 600 MeV/amu. The

secondary contribution is similarly found by noting the equation (17)

becomes



Vr. (rJ 4" _ 4" PY) < r m <_ _ rj 4- _ 4- p_tt/m (33)

from which the average spectrum is evaluated. The full approximate

Green's function is then

_,2j. (x, !/, rj, rm) . _e-°|J =-°_jlt 6j,,,6(z + PV 4-rj

4-vj

Equation (34) is the first approximation to the Green's function in a

shielded medium (two layers) and can be modified to multiple layers.

The first spectral modification is considered next. It is easy to show

that the first collision term has the properties

VjOIjm e-°lmz-°2mV I rlnlu

..(t) , I",,,-"jl for rrn =

_l_j.,_x, I/,rj,r_) = _J°zJme-otJ'-°'J_ for ,_. r'
I"m -vii ml

These properties are used to correct the average spectrum as

(I) ,
_(I) . ,% Pj gl2j,n_z, _I)

Fro)

wheregll2_m(/._)is the first collision term of equation (34) and

(34)

(35)

(36)

-' ' ,',)/2r., = (rmu + (37)

is the midpoint of _ between its limits given by equation (33). The

term of equation (36) has the property that

I

/ rl_llU

Jr_t him(x, Jl)(r'- P_)dr/-- 0

(38)



ensuring that the first term of equation (36) is indeed the average

spectrum as required. The spectral slope parameter is found to be

A similarly simple spectral correction could be made to the higher

order terms. The spectral correction given in equation (39) is included

in the present Green's function code.

Solution for Laboratory Beams

Using the boundary condition appropriate for laboratory beams given

by equation (3), cumulative spectrum given by

I
(4o)

and the cumulative energy moment needed to evaluate the spectral

correction given by

_j(E)= 1 [I er] lE- o (E- Eo) _]

The average energy on any subinterval (EI,E2) is then

(41)

= I-_(E:,)-;_(E_)]iiFj(E,)- r'_(E2)]
(42)

and the beam generated flux becomes



_(:, v, _) : e-°'j:-°_v _)(_) + • _-p_)

-i_' 'v) (r_,(_',,)

(43)

where_ is evaluated using equation (42) with El,and

and upper limit asscciated with r' and

E2 as the lower



DISCUSSION OF RESULTS

A series of algorithms in support of Small Spacecraft Technology

Inititive (SSTI) based on the multi-layered Green's function

formalism were developed and tested during this research project.

In order to implement the theoritical formulations presented in the

theory section of this research grant for multi-layered targets, the

following tasks were undertaken:

I. A direct conversion from formulation to coding based on the des-

cribed procedures was performed. This resulted in a first gene-

ration multi-layered computer codes with acceptable computational

efficiency for the low order terms.

2. Within the scope of the grant, Further improvments were carried out

to make the higher order terms, as computationallly efficient as

possible. The current version of these codes are computationally

efficient for nearly all terms.

3. The resulting coded package were further tested against the results

of a recent two-layered experiments for correlation purposes and

code efficency studies.

4. The tested version of the two-layered algorithm was used as a

mean of evaluating the shielding properties of different two-layered

target materials as they are exposed to galactic cosmic radiations

(GCR).
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